
30 570684 Ch24.qxd 3/31/04 2:59 PM Page 310

310 Part IV: C Level

Able Baker Charlie
1 2 3
Alpha Beta Gamma

Though the \ts in the printf statements look sloppy, the output is definitely
organized. Tabular, dude!

� The “tab stops” are preset to every eighth column in C’s output. Using
a \t inserts a given number of space characters in the output, lining up
the next bit of text at the next tab stop. I mention this because some
people assume that the tab always moves over eight (or however many)
characters. That is not the case.

� The \f and \v characters display special symbols at the Windows com
mand prompt. Rather than a form feed, \f displays the ankh character.
Rather than a vertical tab, \v displays the male symbol.

� As long as you know a character’s hexadecimal code value, you can
always get it displayed by using the \x escape sequence. Just plug in
the hexadecimal code and there you go!

The Complex printf() Format

The printf() function can also be used to display the contents of variables,
which you have been seeing throughout this book with integer variables and
the %d placeholder, character variables and %c, and so on. To make it happen,
printf() uses this format:

printf(“format_string”[,var[,...]]);

Text still appears in double quotes, but after it’s used to display the values in
variables, it becomes a format string. (It’s still the same text in double quotes.)
The format string is followed by one or more variables, var.

Those var variables are plugged in to appropriate spots in the format_string
according to special percent-sign placeholders. Those percent-sign place
holders are called conversion characters. For example:

printf(“Yeah, I think %s is a jerk, too.\n”,jerk);

The format string is text that printf() displays on the screen: Yeah, I
think ____ is a jerk, too. The %s is a conversion character — a blank —
that must be filled by a string of text. (I call them placeholders, but the lords
of C claim that they’re conversion characters.)

